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“A disparate-impact claim relying on a statistical disparity must fail if the plaintiff cannot 
point to a defendant's policy or policies causing that disparity.”

“A plaintiff who fails to allege facts at the pleading stage or produce statistical evidence 
demonstrating a causal connection cannot make out a prima facie case of disparate 
impact.”

“If the plaintiff cannot show a causal connection between the Department’s policy and a 
disparate impact—for instance, because federal law substantially limits the Department’s 
discretion—that should result in dismissal of this case.”

US Supreme Court, 2008

“To establish a disparate-treatment claim under this plain language, a plaintiff  
must prove that age was the “but-for” cause of the employer’s adverse decision.”

“A plaintiff must prove by a preponderance of the evidence (which may be direct or 
circumstantial), that age was the “but-for” cause of the challenged employer decision.”

US Supreme Court, 2015

Why Causality matters for Fair AI?



Outline
1. Review basic causal concepts in the context of fairness.


2. Introduce the foundations of fairness analysis  
 based on causal inference, including theory of decomposing  
 variations, causal measures, and the fairness map.


3. Discuss connections with previous literature.


4. Show how Causal Fairness Analysis can be used for  
 the task of bias detection & quantification.


5. Discuss implications of Causal Fairness Analysis 
 to the task of Fair Prediction.
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Fairness Tasks (Big Picture)
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(unobserved reality)
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Empirical  
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Dataset  
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Domain Knowledge Data


CollectionLaw &  
Norms

Doctrines &  
 Social norms

Disparate Treatment

Disparate Impact

Business Necessity

1. Bias 
Detection2. Fair 

Prediction3. Fair 
Decision-
making

Section 1 
Figure 2



I. Causal Inference Review
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Structural Causal Model (SCM)
Definition: A structural causal model M is a 4-tuple 
<V, U, ℱ, P(u)>, where

• V = {V1,...,Vn} are endogenous (observed) variables;

• U = {U1,...,Um} are exogenous (latent, unobserved) 

variables;

• ℱ= {f1,..., fn} are functions determining each 

variables in Vi ∈ V, vi ← fi(pai, ui), Pai ⊂ Vi,Ui ⊂ U;

• P(u) is a distribution over the exogenous U.
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 Axiomatic characterization: Galles-Pearl, 1998;  
  Halpern, 1998. Survey: Bareinboim et al., 2020. 

https://link.springer.com/article/10.1023/A:1009602825894
https://dl.acm.org/doi/10.5555/2074094.2074118
https://causalai.net/r60.pdf


Sampling-Evaluation Loop
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Unit U = (u1, …, uk)

Space of units

Mechanisms :ℱ

After  is fixed,  
the evaluation is deterministic

u

Mechanisms ℱ Distribution P(u)

V1 ← f1(u1)
V2 ← f2(v1, u2)

⋮
Vk ← fk(v1, …, vk1

, uk)

= M

Distribution  :P(u)



SCM M → Causal Diagram G
• Every SCM M induces a causal 

diagram G.

• Represented as a directed acyclic 

graph (DAG), where:

• Each Vi ∈ V is a node,

• There is an edge Vi ⟶ Vj if  

Vi ∈ Paj, and

• There is a bidirected edge  

Vi ⇠⇢ Vj if  Ui ⋂ Uj ≠ ∅.
10

D ← fd (A,B,U) 
E ← fe (C,U)

E

C

D

A B

ED

V = {A, B, C, D} 
U = {U} 



SCM M → Causal Diagram G
• Every SCM M induces a causal 

diagram G.

• Represented as a directed acyclic 

graph (DAG), where:

• Each Vi ∈ V is a node,

• There is an edge Vi ⟶ Vj if  

Vi ∈ Paj, and

• There is a bidirected edge  

Vi ⇠⇢ Vj if  Ui ⋂ Uj ≠ ∅.
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D ← fd (A,B,U) 
E ← fe (C,U)

D

A B

E

C

G

V = {A, B, C, D} 
U = {U} 



Counterfactuals’ Semantics
• Definition (Potential Response): Let X, Y ⊆ V.  

The potential response of Y to action do(X = x), 
denoted by Yx(u), is the solution for Y of the 
system of equations in Mx, where the mechanisms 
of X are replaced with x (i.e. Yx(u)=YMx(u)).


• Definition (Counterfactual): Let X, Y ⊆ V. The 
counterfactual sentence “the value Y would have 
obtained, had X been x for unit U=u”  
is interpreted as the potential response Yx(u).

12
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D

X Y
Gender Admission


Outcome

Department 

of Choice

Example 1 (Berkeley admission). Students apply for university 
admission (Y), and choose specific departments to which they wish  
to join (D = 0 for sciences, D = 1 for arts & humanities). For the  
purpose of discrimination monitoring, gender is also recorded  
(X = 0 for male, X = 1 for female).

(Truth-Unobserved)

SCM  M* 
 
                
                       
                 
                

X ← fX(Ux)
D ← fD(X, UD)
Y ← fY(X, D, UY)
P(UX, UD, UY)

SCM  M* 
 
                
                       
                 
                

X ← fX(Ux)
D ← fD(X, UD)
Y ← fY(X, D, UY)
P(UX, UD, UY)

* Bickel, P., Eugene H, and J. William O’Connell.  “Sex bias in graduate admissions: Data from Berkeley.”  
Science 187.4175 (1975): 398-404.


SCM  M* 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + λX)
Y ← Bernoulli(0.1 + αX + βD)α
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SCM M* 
 

 
 

X ← Bernoulli(0.5 + λU)
Z ← $(40 + μU, σ2)
W ← Poisson(0.5 + αX + βZ)
Y ← Bernoulli(0.1 + δX + ηW + ϕZ)

W

X Y

Z

Race Recidivism

Prediction

Prior

Convictions

Age

Example 2 (COMPAS prediction). Northpointe are trying to predict 
whether a person will recidivate after being released (Y). Variable Z 
represents the age, W represents prior convictions, and X represents 
race (X = 0 for White-Caucasian, X = 1 for Non-White).

(Truth-Unobserved)
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SCM M* 
 

 
 

 

X ← Bernoulli(0.5 + λU)
Z ← $(40 + μU, σ2)
W1 ← Poisson(0.5 + α1X)
W2 ← Binomial(10,0.5 + α2X)
Y ← $(3 + δX + ηW + ϕZ,1)

Example 3 (Government Census). The US census data records a 
person’s yearly salary ( , in tens of thousands of $). The census also 
records age ( ), gender (  for male,  for female), education 
level ( ) and employment status ( ).

Y
Z X = 0 X = 1

W2 W2

W1

X Y

Z

W2
Education Employment

Age

Salary
Gender

(Truth-Unobserved)



The Emergence of the  
“Standard Fairness Model”
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W

X Y

Z

Protected

Attribute

Outcome

Mediators

Demographic variables

Berkeley

COMPAS

Census

Standard Fairness Model

Zhang & Bareinboim. “Fairness in Decision-Making - The Causal Explanation Formula.” Proc. of the 32nd AAAI Conference. 2018. 



(How to explain observed disparities  
found in the data in terms of the 

unobservable causal mechanisms?)
17

The Fundamental Problem  
of Causal Fairness Analysis 

(FPCFA) 



Active Mechanisms 

SpuriousDirect Indirect

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

TVx0, x1 = 14%

Data !

0.3
0.2

ob
se

rv
ed

un
ob

se
rv

ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

No!

The Fundamental Problem of 
Causal Fairness Analysis
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Active Mechanisms 

Spurious

Active Mechanisms 

Direct Indirect Direct Indirect Spurious

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

SCM  M’ (hypothesized): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0.3X + 0 * D)

TVx0, x1 = 14%

Data !

0.30.3
0.2

ob
se

rv
ed

un
ob

se
rv

ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

0

No! Yes!

The Fundamental Problem of 
Causal Fairness Analysis

`
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Active Mechanisms 

Spurious

Active Mechanisms 

Direct Indirect Direct Indirect Spurious

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

SCM  M’ (hypothesized): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0.3X + 0 * D)

TVx0, x1 = 14%

Data %

0.30.3
0.2

ob
se

rv
ed

un
ob

se
rv

ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

0

No!
!

Yes!
Don’t know!M’ can generate


same data. 

The Fundamental Problem of 
Causal Fairness Analysis

`
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Legal Doctrines:  
Disparate Treatment & Impact

19

• The most common legal doctrines found in the US and EU are 
known as disparate treatment and disparate impact.  


• Disparate treatment is focused on how changes induced by the 
treatment, or the protected attribute X, affects the outcome Y.  
In words, how the decision-making criteria changes with X.  
In CI, this is represented by the notion known as “direct effect.”


• Disparate impact is related to how outcome Y behaves,  
and trying to understand disparities regardless of the treatment. 

• There are exceptions, & other central notions in legal settings include 

what is known as “business necessity” (see also “red lining”). 

• In general, most of the legal discussions revolve around showing 

specific causal links, depending on what is permitted or forbidden 
following society’s standards and expectations.



Structural Fairness Measures 
• In order to support a more math. formulation amenable to ML 

optimization, aligned with the doctrines of disparate treatment 
& impact, we introduce the structural fairness measures.  

   Definition. Let  and  be the parents and ancestors of  
in the diagram .  For an SCM ,  is fair w.r.t.  in terms of: 

1. the direct effect ( , for short) if and only if , 
2. the indirect effect ( ) if and only if , 
3. spurious effect ( ) if and only if 

.

pa(Vi) an(Vi) Vi
& M Y X

DE-fairX(Y ) X ∉ pa(Y )
IE-fairX(Y ) X ∉ an(pa(Y ))

SE-fairX(Y )
UX ∩ an(Y ) = ∅ ∧ an(X) ∩ an(Y ) = ∅

20



Structural Measures in the  
context of the Legal Systems

• The structural measures represent idealized conditions in which 
discrimination can be thought about and articulated. 


• If we go back to the legal doctrines, we can start connecting 
disparate treatment and impact with the structural measures.

21

DE-fairX(Y ) IE-fairX(Y ) SE-fairX(Y )

SCM M *

TV-fairX(Y )

Truth

Structural

measures

Composite

measures

Disparate 
treatment

Can we use TV for  
disparate impact?

Disparate 
impact



Example: US Government Census
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W

X Y

Z

Gender Salary

Age, Nationality

Education,

Employment

• After collecting data, it has been observed that  
  

           > 0. 
 
How could the observed disparity be explained?

TV = E[Y ∣ male] − E[Y ∣ female]

(1) The salary decision is based on employee’ 
gender: .X → Y

(2) Decisions were based on education or 
employment: . X → W → Y

(3) Age or nationality are used to infer the 
person’s gender: .X ↔ Z → Y

(1) suggests a typical case of disparate treatment. 

(1+2+3) & the implied TV’s disparity suggest a disparate impact case. 



Example: US Government Census
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W

X Y

Z

Gender Salary

Age, Nationality

Education,

Employment

• After collecting data, it has been observed that  
  

           > 0. 
 
How could the observed disparity be explained?

TV = E[Y ∣ male] − E[Y ∣ female]

(1) The salary decision is based on employee’ 
gender: .X → Y

(2) Decisions were based on education or 
employment: . X → W → Y

(3) Age or nationality are used to infer the 
person’s gender: .X ↔ Z → Y

After a legal argument, the jury may be okay with Y’s variations due to  
education, but not okay with the variations due to gender or age.

How to disentangle these variations within TV? 



The Attribution Problem

23

indirect spuriousdirect
TV = E[Y ∣ male] − E[Y ∣ female]

On the one hand, we consider the  
observed statistical disparity:

Disparate 
Treatment

Disparate 
Impact

Business 
Necessity

On the other, we need to “ground” 
(or attribute) the variations to 

different legal doctrines”

But, we know that TV contains

variations

 This entanglement makes  
the attribution problem challenging!

⟹

Need a framework/measures  
that allow for the decomposition    

of the variations within TV
W

X Y

Z

W

X Y

Z

W

X Y

Z



Definition. Let  be a class of SCMs on which a structural 
criterion  and measures  and  are defined.

Ω
Q μ μ′ 

Admissibility & Power

24

Note: Power and Admissibility are the 
 analogues of necessity and sufficiency 

 for the corresponding fairness measures.

• The measure  is said to be admissible w.r.t  if 
                   
                  

μ Q

∀ℳ ∈ Ω : Q(ℳ) = 0 ⟹ μ(ℳ) = 0.

• The measure  is said to be more powerful than  if 
        
                     (i)  is admissible 
                    (ii) 

μ′ μ

μ′ 

μ′ (ℳ) = 0 ⟹ μ(ℳ) = 0.



Decomposability
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Definition. Let  be a class of SCMs and  be a measure defined 
over it.  is said to be -decomposable if there exist measures  
 
                           

and where  is a non-trivial function vanishing at the origin, i.e., 

Ω μ
μ Ω

μ1, …, μk such that μ = f(μ1, …, μk),

f
f(0,…,0) = 0.

Note: Decomposability can imply lack of admissibility.

Variations  
within TV

μ
captures some subset 

variations

∃μ1, μ2, μ3

which are within  
and capture the 

same variations

μ



Admissibility, Power, Decomposability  
- Summary
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DE-fairX(Y ) IE-fairX(Y ) SE-fairX(Y )

SCM M *

TV-fairX(Y )

Truth

Structural

measures

Composite

measures

Atomic

measures  

(to be 
constructed)

Admissible!

Decomposable!

⟹ ⟹ ⟹

⟹ ⟹ ⟹

Powerful 
as possible!…… …

IE measure 1 SE measure 1DE measure 1

DE measure k IE measure k SE measure k

data



Fundamental Problem of Causal 
Fairness Analysis (FPCFA)
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Definition. Let  be a fairness measure defined over a space of SCMs 
. Let  be a collection of structural fairness criteria. The 

Fundamental Problem of Causal Fairness Analysis is to find a 
collection of measures  s.t. the following properties hold: 

μ
Ω Q1, …, Qk

μ1, …, μk

(iii)  are as powerful as possible.μ1, …, μk

(i)  is decomposable w.r.t. μ μ1, …, μk

(ii)  are admissible w.r.t. the structural fairness          
criteria 

μ1, …, μk
Q1, Q2, …, Qk

Decomposability

Admissibility

Power

How to solve the FPCFA?
Section 3.1 

Definition 13



The Anatomy of  
Contrastive Measures

29

A contrast compares the outcome  of individualsY

who coincide with the observed event  
 versus , in the factual world,E1 E0

and whose values, possibly counterfactually,

were intervened on following  versus .C1 C0

Definition. A contrast is any quantity of the form 

 
 

where  are observed (factual) events and 
   are counterfactual events to which the outcome  responds.

P(yC1
∣ E1) − P(yC0

∣ E0) .

E0, E1
C0, C1 Y

Section 3.2



Contrastive Measures:  
Factual vs. Counterfactual Basis

30

Theorem. Any contrast  can be decomposed 
into its factual and counterfactual components: 

P(yC1
∣ E1) − P(yC0

∣ E0)

difference arising from 
counterfactuals  

used to capture the causal 
influence of  on .

C0, C1

X Y

difference arising from events 
 

used to capture non-causal  
(spurious) influences of  on .

E0, E1

X Y

P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.

We 
normally 

think of 
 as 

including .
C0, C1, E0, E1

X



Structural Basis Expansion I
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Theorem (continued). Whenever , any counterfactual contrast 
 admits the following structural basis expansion

E0 = E1 = e
P(yC1

∣ E = e) − P(yC0
∣ E = e)

For a specific unit ,  

Y’s response to 

the transition C0 → C1.

U = u Population of units  
consistent with the 

factual evidence E=e.

∑
u

[yC1
(u) − yC0

(u)]

unit-level difference

P(u ∣ E = e)
posterior

.



Contrastive Measures:  
Factual vs. Counterfactual Basis
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Theorem. Any contrast  can be decomposed 
into its factual and counterfactual components: 

P(yC1
∣ E1) − P(yC0

∣ E0)

difference arising from 
counterfactuals  
used to capture causal 
influences of  on .

C0, C1

X Y

difference arising from events 
 

used to capture non-causal 
influences of  on .

E0, E1

X Y

P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.



Structural Basis Expansion II
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Theorem (continued). Whenever  , any factual contrast 
 admits the following structural basis expansion: 

 

C0 = C1 = c
P(yc ∣ E1) − P(yc ∣ E0)

∑
u

yc(u)
⏟

unit outcome

[P(u ∣ E1) − P(u ∣ E0)
posterior difference

] .

Baseline outcome  
for a fixed unit .U = u

Difference in posteria of how 
 likely unit  is selected  

under events  vs. .
U = u

E0 E1

- We will be mostly interested in contrasts w/ ,  
 so that  represents causal pathways.

C = x
X = x



Theorem (Contrasts & Structural Basis). Any contrast can be 
decomposed into its factual and counterfactuals components: 

 
 

Furthermore:  

A. Any counterfactual contrast ( ) admits the structural 
basis expansion of the form: 

 

B. any factual contrast ( ) admits the structural basis 
expansion of the form:  

 

P(yC1
∣ E1) − P(yC0

∣ E0) = P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.

E0 = E1 = E

P(yC1
∣ E) − P(yC0

∣ E) = ∑
u

[yC1
(u) − yC0

(u)]

unit-level difference

P(u ∣ E)
posterior

.

C0 = C1 = C

P(yC ∣ E1) − P(yC ∣ E0) = ∑
u

yC(u)
⏟

unit outcome

[P(u ∣ E1) − P(u ∣ E0)
posterior difference

] .

Putting it all together…

mechanisms ℱ population P(u)

34



Theorem (Contrasts & Structural Basis). Any contrast can be 
decomposed into its factual and counterfactuals components: 

 
 

Furthermore:  

A. Any counterfactual contrast ( ) admits the structural 
basis expansion of the form: 

 

B. any factual contrast ( ) admits the structural basis 
expansion of the form:  

 

P(yC1
∣ E1) − P(yC0

∣ E0) = P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.

E0 = E1 = E

P(yC1
∣ E) − P(yC0

∣ E) = ∑
u

[yC1
(u) − yC0

(u)]

unit-level difference

P(u ∣ E)
posterior

.

C0 = C1 = C

P(yC ∣ E1) − P(yC ∣ E0) = ∑
u

yC(u)
⏟

unit outcome

[P(u ∣ E1) − P(u ∣ E0)
posterior difference

] .

mechanisms ℱ population P(u)

34



Explainability Plane
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Different events 

imply different units  

accounted for by the measure.

E = e
Different values of interventions 

 imply a 
different mechanism’s selection 

(direct, indirect, spurious).

C0 = c0, C1 = c1

Start with general 
population-level 
 DE, IE, and SE

move along 
…

And end at  
the unit level.

Population Axis

Mechanism Axis

Section 3.2 
Figure 7



TV family of causal  
fairness measures

36



Gedankenexperiment (NDE)

37

• For a male employee ( ), how would his salary (Y) change  
 had he been a female ( ), while keeping the age, nationality, 
education, employment status unchanged (i.e., at the natural level 

)?

X = x0
X = x1

X = x0

W

X = x0 Y

Z

Yx1,Wx0
Yx0,Wx0

W

X = x0 Y

Z

X = x1

NDEx0,x1(y) = P(yx1,Wx0
) − P(yx0,Wx0

)

• (perceived as) 



Gedankenexperiment (NIE)

38

W

X = x1 Y

Z

W

X = x0 Y

Z

X = x1

Yx1,Wx0
Yx1,Wx1

NIEx1,x0(y) = P(yx1,Wx0
) − P(yx1,Wx1

)

• For a female employee ( ), how would her salary (Y) change 
had she been a male ( ), while keeping gender unchanged 
along the direct causal pathway (at the natural level )?

X = x1
X = x0

X = x1



Gedankenexperiment (Exp-SE)

39

• How would an individuals salary (Y) change if their gender is set to 
male (or female) by intervention, compared to observing their salary 
as male (female)?

Exp-SEx(y) = P(yx) − P(y ∣ x)

W

Y

Z

X = x

Yx Y ∣ X = x
W

Y

Z

X = x
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W

Y

Z

X = x1

Y ∣ X = x1

W

Y

Z

X = x1

Yx1

Yx0

W

Y

Z

X = x0

W

Y

Z

X = x0

Yx0 Y ∣ X = x0

W

Y

Z

X = x0

W

Y

Z

X = x1

Yx1

TVx0,x1(Y )

−Exp-SEx1
(y)

Exp-SEx0
(y)

W

Y

Z

X = x1X = x0

Yx1,Wx0

W

Y

Z

X = x1X = x0

Yx1,Wx0

NDEx0,x1(y)−NIEx1,x0(y)

Lemma. The total variation measure can be decomposed 
into its direct, indirect, and spurious variations: 

TVx0,x1(y) = NDEx0,x1(y) − NIEx1,x0(y) − (Exp-SEx1
(y) − Exp-SEx0

(y)) .
TV Decomposition I
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W

Y

Z

X = x1

Y ∣ X = x1

W

Y

Z

X = x1

Yx1

Yx0

W

Y

Z

X = x0

W

Y

Z

X = x0

Yx0 Y ∣ X = x0

W

Y

Z

X = x0

W

Y

Z

X = x1

Yx1

−Exp-SEx1
(y)

Exp-SEx0
(y)

W

Y

Z

X = x1X = x0

Yx1,Wx0

W

Y

Z

X = x1X = x0

Yx1,Wx0

NDEx0,x1(y)−NIEx1,x0(y)
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W

Y

Z

X = x1

Y ∣ X = x1

W

Y

Z

X = x1

Yx1

Yx0

W

Y

Z

X = x0

W

Y

Z

X = x0

Yx0 Y ∣ X = x0

W

Y

Z

X = x0

W

Y

Z

X = x1

Yx1

−Exp-SEx1
(y)

Exp-SEx0
(y)

W

Y

Z

X = x1X = x0

Yx1,Wx0

W

Y

Z

X = x1X = x0

Yx1,Wx0

NDEx0,x1(y)−NIEx1,x0(y)

Lemma. The total variation measure can be decomposed 
into its direct, indirect, and spurious variations: 

TVx0,x1(y) = NDEx0,x1(y) − NIEx1,x0(y) − (Exp-SEx1
(y) − Exp-SEx0

(y)) .



Relation to Structural Fairness
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Corollary. The criteria based on NDE, NIE, and Exp-SE measures 
are admissible with respect to structural direct, indirect, and 
spurious fairness. Formally, these facts are written as: 

In practice, for example, by computing the NDE,  
we can test for the presence of structural direct effect.

S-DE ⟹ NDE-fair
S-IE ⟹ NIE-fair

S-SE ⟹ Exp-SE-fair

admissibility w.r.t. 
structural



Testing Structural  
Fairness in Practice

• Our previous corollary shows that 
                                 


• By taking this statement’s contrapositive, we can see that 
                         


• Therefore, in practice, one may use the following hypothesis 
testing procedure for testing structural direct effect, 
                                 

S-DE ⟹ NDE-fair .

NDEx0,x1(y) ≠ 0 ⟹ ¬S-DE .

H0 : NDEx0,x1(y) = 0.

42

A similar approach can be used 
for the NIE and Exp-SE since  

 S-IE ⟹ NIE-fair
S-SE ⟹ Exp-SE-fair

This will be used to 
connect with the 

disparate treatment and 
impact doctrines later on.
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Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

(Truth-Unobserved)

SCM M*  
(unobserved) 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

NDEx0,x1(y) = P(yx1,Wx0
) − P(yx0

)
= P(Bernoulli( 1

5 (1 − Z ) + 1
6 W ) = 1)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z) = 0. Section 4 

Example 9
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W

X Y

Z

Gender Job offer

PhD

Age

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

(Truth-Unobserved)

SCM M*  
(unobserved) 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

NDEx0,x1(y) = P(yx1,Wx0
) − P(yx0

)
= P(Bernoulli( 1

5 (1 − Z ) + 1
6 W ) = 1)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z) = 0. Section 4 

Example 9

NDE is admissible w.r.t. S-DE. 
However, here NDE = 0,  

but structural direct effect exists. 
 

Q: Is NDE powerful enough for 
 detecting direct discrimination?



Gedankenexperiment (Ctf-DE)
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• For a male employee , how would his salary change (Y) had 
he been a female ( ), while keeping the age, nationality, 
education and employment status unchanged (at the level of 

X = x0
X = x1

W

X = x0 Y

Z

W

X = x0 Y

Z

X = x1

Yx1,Wx0
|X = x0 Yx0,Wx0

|X = x0

Ctf-DEx0,x1(y) = P(yx1,Wx0
∣ x0) − P(yx0,Wx0

∣ x0)
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Ctf-DEx0,x1(y ∣ x0) = P(yx1,Wx0
∣ x0) − P(yx0

∣ x0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ x0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ x0)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)P(z ∣ x0)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z)P(z ∣ x0) = 0.036.

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Section 4 
Example 10
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Ctf-DEx0,x1(y ∣ x0) = P(yx1,Wx0
∣ x0) − P(yx0

∣ x0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ x0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ x0)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)P(z ∣ x0)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z)P(z ∣ x0) = 0.036.

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Key properties of Ctf-DE:  
 

1. Ctf-DE is admissible. 
2. Ctf-DE is more powerful than NDE.

Section 4 
Example 10



-specific measuresx
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Definition. The effect of treatment on the treated and counterfactual 
direct, indirect, and spurious effects are defined as 

                     

ETTx0,x1(y ∣ x) = P(yx1
∣ x) − P(yx0

∣ x)
Ctf-DEx0,x1(y ∣ x) = P(yx1,Wx0

∣ x) − P(yx0
∣ x)

Ctf-IEx1,x0(y ∣ x) = P(yx1,Wx0
∣ x) − P(yx1

∣ x)
Ctf-SEx0,x1(y) = P(yx0

∣ x1) − P(yx0
∣ x0) .

Structural Basis Expansion: 

Ctf-DEx0,x1(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ x)

Ctf-IEx1,x0(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ x)

Ctf-SEx0,x1(y) = ∑
u

yx0
(u)[P(u ∣ x1) − P(u ∣ x0)] .

remember where 
we are within (
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Definition. The effect of treatment on the treated and counterfactual 
direct, indirect, and spurious effects are defined as 

                     

ETTx0,x1(y ∣ x) = P(yx1
∣ x) − P(yx0

∣ x)
Ctf-DEx0,x1(y ∣ x) = P(yx1,Wx0

∣ x) − P(yx0
∣ x)

Ctf-IEx1,x0(y ∣ x) = P(yx1,Wx0
∣ x) − P(yx1

∣ x)
Ctf-SEx0,x1(y) = P(yx0

∣ x1) − P(yx0
∣ x0) .

Structural Basis Expansion: 

Ctf-DEx0,x1(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ x)

Ctf-IEx1,x0(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ x)

Ctf-SEx0,x1(y) = ∑
u

yx0
(u)[P(u ∣ x1) − P(u ∣ x0)] .

remember where 
we are within 5

TEx0,x1(y ∣ x) = P(yx1
) − P(yx0

)
NDEx0,x1(y) = P(yx1,Wx0

) − P(yx0
)

NIEx1,x0(y) = P(yx1,Wx0
) − P(yx1

)
Exp-SEx0,x1

(y) = P(yx) − P(yx ∣ x) .

where we came from

where we go next

x-specific
more powerful than

general



-specific measuresz
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Definition. The -specific total, direct, and indirect effects are defined as z

z-TEx0,x1(y ∣ z) = P(yx1
∣ z) − P(yx0

∣ z)
z-DEx0,x1(y ∣ z) = P(yx1,Wx0

∣ z) − P(yx0
∣ z)

z-IEx1,x0(y ∣ z) = P(yx1,Wx0
∣ z) − P(yx1

∣ z) .

Structural Basis Expansion: 

z-DEx0,x1(y ∣ z) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ z)

z-IEx1,x0(y ∣ z) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ z) .

remember where 
we are within 5 where we go next

z-specific
more powerful than

x-specific
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z-DE(y ∣ Z = 0) = P(yx1,Wx0
∣ Z = 0) − P(yx0

∣ Z = 0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ Z = 0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ Z = 0)

= ∑
w∈{0,1}

P(w)[ 1
5 + 1

6 w − 1
6 w] = 1

5 .

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Section 4 
Example 11
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z-DE(y ∣ Z = 0) = P(yx1,Wx0
∣ Z = 0) − P(yx0

∣ Z = 0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ Z = 0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ Z = 0)

= ∑
w∈{0,1}

P(w)[ 1
5 + 1

6 w − 1
6 w] = 1

5 .

Key properties of -DE:  
1. -DE is admissible. 

2. -DE is more powerful than Ctf-DE.

z
z

z

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Section 4 
Example 11



-specific measuresv′ 
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Definition. The -specific total, direct, and indirect effects are defined as v′ 

v′ -TEx0,x1(y ∣ v′ ) = P(yx1
∣ v′ ) − P(yx0

∣ v′ )
v′ -DEx0,x1(y ∣ v′ ) = P(yx1,Wx0

∣ v′ ) − P(yx0
∣ v′ )

v′ -IEx1,x0(y ∣ v′ ) = P(yx1,Wx0
∣ v′ ) − P(yx1

∣ v′ ) .

Structural Basis Expansion: 

v′ -DEx0,x1(y ∣ v′ ) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ v′ )

v′ -IEx1,x0(y ∣ v′ ) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ v′ ) .

remember where 
we are within 5

v-specific
more powerful than

z-specific



Unit-level measures
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Remember where 
we are within .5

Definition. Given a unit , the unit-level total, direct, and indirect 
effects are given by 

U = u

unit-TEx0,x1(y(u)) = yx1
(u) − yx0

(u)
unit-DEx0,x1(y(u)) = yx1,Wx0

(u) − yx0
(u)

unit-IEx1,x0(y(u)) = yx1,Wx0
(u) − yx1

(u) .

These quantities are 
the structural basis.

We reached the final, 
unit-level measures!



TV family measures as contrasts
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Direct

Indirect

Spurious

units

mechanisms
unitmechanism

Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Spurious

units

mechanisms
unitmechanism



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Spurious

Causal

units

mechanisms
unitmechanism



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Causal

units

mechanisms
unitmechanism

Spurious

TV



Fairness Map
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Fairness Map
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structural to  
unit

unit to  
-specificv′ 

-specific to 
-specific

v′ 

z

-specific to 
-specific

z
x

-specific to 
general

x



Fairness Map
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Mediation  
formula 

(Pearl, 2012)

Extended 
Mediation  
Formula

TV decomposition ITV decomposition II (ZB18)

Section 4.2 
Theorem 7



Other connections with the literature

• How does the presented framework relates to 
other prominent measures in the literature?

58

(i) Counterfactual Fairness (Kusner et. al., ’17)

   (ii) Individual Fairness (Dwork et. al., ’12)

• In particular, we consider the following measures:



59Direct Indirect Spurious

P(u)
P(u ∣ x)
P(u ∣ z)
P(u ∣ v)

δu

TV = E[Y ∣ male] − E[Y ∣ female]

NDE

x-DE

z-DE

v-DE

u-DE

NIE

x-IE

z-IE

v-IE

u-IE

Exp-SE

x-SE

TE

x-TE

z-TE

v-TE

u-TE

Causal

⟹ ⟹ ⟹ ⟹

∧
decomposable!

inadmissible!

unit-level  
quantities  

are not

identifiable

Counterfactual fairness  
(Kusner et. al., 2017)
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Assumption: ancestral closure of set .X

redlining 

religious segregation 

rural/urban balance 
of genders in China

Counterfactual fairness  
(Kusner et. al., 2017)
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Assumption: ancestral closure of set .X
However, is this a realistic assumption?

redlining 

religious segregation 

rural/urban balance 
of genders in China

 In summary, Counterfactual Fairness is: 

• decomposable & inadmissible (w.r.t DE, IE, SE), 
• not identifiable in general, and 
• oblivious to spurious effects (and corresponding 

business necessity requirements).  
 
See also Section 4.4.1 for further details.

Counterfactual fairness  
(Kusner et. al., 2017)



Individual Fairness  
(Dwork. et. al., 2012)

Causal Fairness Analysis implications on IF:

61

• IF captures the direct effect only under the SFM.

Example 17 
Section 4.4.2

Proposition 5 
Section 4.4.2

Example 18 
Section 4.4.2

Proposition 11 
Section 4.4.2

• IF is oblivious to the underlying causal mechanisms. 

• IF with a sparse metric  is not admissible. d

• IF with a complete metric  doesn’t account for business 
necessity. 

d



Part II
62



Fairness Tasks  
(Big Picture)

63

Causal  
Diagram G

 
 

 
 
 

(unobserved reality)

SCM M*

Fairness 
Measures

Empirical  
Measures

Structural  
Measures

Dataset  
D

Tasks

Modeling & 
Domain Knowledge Data


CollectionLaw &  
Norms

Doctrines &  
 Social norms

Disparate Treatment

Disparate Impact

Business Necessity

1. Bias 
Detection2. Fair 

Prediction3. Fair 
Decision-
making



Task 1.  
Bias Detection & Quantification



Fairness Cookbook



1) Obtain data on past decisions .%
2) Determine the (possibly simplified) causal diagram  (w.r.t. underlying ).& ℳ*

4) Consider existence of Disparate Treatment: 

H(x-DE)
0 : x-DEx0,x1(y ∣ x0) = 0.

5) Consider existence of Disparate Impact:

66

3) Determine the Business Necessity (BN) set ( ).∅, {Z}, {W}, {Z, W}

if(W ∉ BN-set) H(x-IE)
0 : x-IEx0,x1(y ∣ x0) = 0.

rejected

not rejected

evidence of  
disparate impact

go to next step

H(x-SE)
0 : x-SEx0,x1(y) = 0.if(Z ∉ BN-set)

rejected

not rejected

evidence of  
disparate impact

no evidence of  
disparate impact

5a) Indirect effect:

5b) Spurious effect:

no evidence of disparate 
treatment (population level)

evidence of disparate 
treatment (population level)

rejected

not rejected

Fairness Cookbook Section 5.1 
Algorithm 1



Task 1: Census 2018 dataset
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W

X Y

Z

Gender Salary

Education, Employment

Demographic variables

• Observed disparity:  
TVx0,x1(y) = $14,000/year



Task 2. Fair Predictions



Prediction Task
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W

̂Y

Z

Original Causal Diagram  
(w.r.t M*, real world)

X

Constructed 
prediction

• The first talk focused on bias 
detection, where we just analyze 
the “observed reality”, i.e., nature 
defines  


• When doing prediction, causally 
speaking, we are constructing a 
new mechanism  
that is under our control (i.e., we 
are selecting it)


• Typically, in ML, we are simply 
interested in learning 


• Does that carry over bias from ?

fY

̂Y ← f ̂Y (x, z, w)

P(y ∣ x, z, w)

fY

Y



Fair Prediction
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W

̂Y

Z

X

Constructed 
prediction

Y

fairness 
constraint

• General answer: simply learning 
 will give biased 

predictions.


• To remove the bias, one might 
wish for  to satisfy a pre-
specified fairness constraint.


• A commonly considered constraint 
is to make .


• In practice, there are different ways 
to satisfying such a constraint: in 
particular, we distinguish post-
processing, in-processing, and 
pre-processing methods.

P(y ∣ x, z, w)

̂Y

TVx0,x1( ̂Y ) = 0

Original Causal Diagram  
(w.r.t M*, real world)



Pre-, In-, Post-Processing
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Data % ML optimization 
algorithm

predictor ̂Y ← f ̂Y (x, z, w)

Typical ML framework:

 
using a transformation

̂Y fair ← T( f ̂Y (x, z, w))

Post-processing: 
massage the predictions 

to satisfy a constraint

ML optimization 
algorithm with a 

fairness constraint

Transform  to  
that satisfies a 

fairness constraint

% %̃

In-processing: 
include a fairness 

constraint in the learning 
step

Pre-processing:  
change the data to 
satisfy a constraint 

apriori



Fair Prediction Theorem (FPT)
Theorem. Let SFM  be the SFM with  and . Let  denote the set of edges of SFM

. Further, let  be the space of linear SCMs (but for the variable , which is a Bernoulli) 
compatible with the SFM  and whose structural coefficients are drawn uniformly from .  

(nZ, nW) |Z | = nZ |W | = nW E
(nZ, nW) 6linear

nZ,nW
X

(nZ, nW) [−1,1]|E|

72

̂ffair = argminf linear E[Y − f(X, Z, W )]2

subject to TVx0,x1
( f ) = 0

also satifies

An SCM  is said to be -TV-compliant ifM ∈ 6linear
nZ,nW

ϵ

|Ctf-DEx0,x1( ̂ffair ∣ x0) | ≤ ϵ,
|Ctf-IEx0,x1( ̂ffair ∣ x0) | ≤ ϵ,

|Ctf-SEx0,x1( ̂ffair) | ≤ ϵ .

Under the Lebesgue measure over , the set of 0-TV-compliant SCMs in SFM  has measure 0.
[−1,1]|E| (nZ, nW)

Furthermore, for any  there exists an  such thatnZ, nW ϵ = ϵ(nZ, nW) P(ℳ is ϵ-TV-compliant) ≤ 1
4 .

X
Y

Z

W

̂Y

non-vanishing probability 
of things “going wrong”

Section 5.2 
Theorem 10



FPT proof sketch
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Objective:
Y = ∑

Vi∈X,Z,W
aViYVi + ϵY, f(X, Z, W ) = ∑

Vi∈X,Z,W
ãViYVi .

ellipsoid

TVx0,x1
( f ) = (E[V ∣ x1] − E[V ∣ x0])TãVY = 0. what the 

constraint is

what we 

actually want

optimizing over ãVY

E[Y − f (X, Z, W )]2 = E[ ∑
Vi∈X,Z,W

(aViY − ãViY)Vi + ϵY]2

= E[ϵ2
Y] + E[ ∑

Vi,Vj∈X,Z,W
(aViY − ãViY)(aVjY − ãVjY)ViVj]

= 1 + (aVY − ãVY)TE[VVT](aVY − ãVY),

Ctf-DE = ãXY(x1 − x0) = 0,
Ctf-IE = ∑

Wi

ãWiY(E[Wi ∣ x1] − E[Wix0
∣ x1]) = 0,

Ctf-SE = ∑
Wi

ãWiY(E[Wix0
∣ x1] − E[Wi ∣ x0])+

∑
Zi

ãZiY(E[Zi ∣ x1] − E[Zi ∣ x0]) = 0.

X
Y

Z

W

̂Y

U
Graph:

U ← N(0,1)
X ← Bernoulli(expit(U ))
Z ← aUZU + aZZZϵZ

W ← aXW X + aZWZ + aWWW + ϵW
Y ← aXY X + aZYZ + aWYW + ϵY

Linear SCM:



FPT visualization
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What the constraint is: 
 

represents a hyperplane  
through origin.

TVx0,x1( ̂y ) = 0
What we want: 

3 linear constraints 
 

represents a single point
Ctf-DE = 0, Ctf-IE = 0, Ctf-SE = 0.

(αX, αW, αZ)

(0,0,0)

measuring the 
probability of ellipsoid 

hitting a point 

ellipsoid with characteristic 
matrix Σ = E[VVT]

normal vector



Fair Prediction Theorem in 
Practice (COMPAS dataset)
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Failure of Optimal Transport  
(in the Individual Fairness framework)
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X ← UX
W ← ϵ(2UW − 1)

Y ← {UY ∨ 1(W > 0) if X = x0
UY ∨ 1(W < 0) if X = x1

X

W

Y

Example.

UX, UW, UY Bernoulli(0.5)

• A common approach for pre-processing is to use optimal transport

• The distribution  is transported onto P(V ∣ x1) P(V ∣ x0)

• In the example, we wish to compute NIEx0,x1(ỹ) = P(ỹx0,W̃x1
) − P(ỹx0

)



Failure of Optimal Transport  
(in the Individual Fairness framework)
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1
2

1
4

1
4

1
4

1
4

1
2

1
4

1
4

W

Y

ϵ−ϵ
0

1

X = x0 distribution (blue)
X = x1 distribution (red)
transport map τ (green)

no transport across -axisy

 depends on W̃ Y

breaks the causal orderingSection 5.2 
Example 22



Failure of Optimal Transport  
(in the Individual Fairness framework)
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P(ỹx0,W̃x1
) = P(ỹx0,ϵ, W̃x1

= ϵ) + P(ỹx0,−ϵ, W̃x1
= − ϵ)

 for any ỹx0,ϵ = 1 u

 for  w.p. 


 w.p.  (1/4 for each )

W̃x1
= ϵ UW = 1 1

2
UW = 0 1

2 UY

yx0,−ϵ = UY

for ,  


with prob.  (0 for ) 

UY = 1 W̃x1
= − ϵ

1
4 UW = 1

P(ỹx0
) = P(yx0

)

P(ỹx0,W̃x1
) − P(ỹx0

) = Indirect  
Effect !≠ 0⟹

yx0
= UY ∨ 1(W > 0)

for , 

for ,  


with prob. 

UY = 1 yx0
= 1

UY = 0 yx0
= 1

1
2

1
2

1
8

3
4 = − 1

8

using the SCM

putting together



Towards the solution
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causal structure of the SFM is  
preserved for the predictor  ̂Y

(i)

W

X Y

Z

W

X ̂Y

Z

identification expressions for 
, , and  equal  

for the predictor 
x-DE x-SE x-IE 0

̂Y

(ii)
x-DEID

x0,x1( ̂y ) = ∑
z,w

[P( ̂y ∣ x1, z, w) − P( ̂y ∣ x0, z, w)]P(w ∣ x0, z)P(z ∣ x0) = 0

x-IEID
x0,x1( ̂y ) = ∑

z,w
P( ̂y ∣ x1, z, w)[P(w ∣ x1, z) − P(w ∣ x0, z)]P(z ∣ x) = 0

x-SEID
x1,x0( ̂y ) = ∑

z
P( ̂y ∣ x1, z)[P(z ∣ x1) − P(z ∣ x0)] = 0.

• how can we construct “causal” fair predictions?

Section 5.2.8



In-processing solution
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Theorem. Let  be the solution to the following optimization problem:̂Y

Then  satisfies 
̂Y

x-DEx0,x1( ̂y ∣ x0) = x-IEx1,x0( ̂y ∣ x0) = x-SEx1,x0( ̂y ) = 0.

̂Y = argminf E[Y − f(X, Z, W )]2

subject to x-DEID
x0,x1( ̂y ∣ x0) = 0

x-DEID
x1,x0( ̂y ∣ x0) = 0

x-IEID
x0,x1( ̂y ∣ x0) = 0

x-IEID
x1,x0( ̂y ∣ x0) = 0

x-SEID
x1,x0( ̂y ) = 0

Section 5.2.9



Pre-processing solution (Causal IF)
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Definition. The Causal Individual Fairness (Causal IF, for short) algorithm is 
performed on a data coming from an SCM  compatible with the standard fairness 
model (SFM), in the following way:

ℳ

X

W

Y

Z

W

Y

Z

x(1)

x(1)

⋮
x(n)

X
z(1)

z(2)

⋮
z(n)

Z
w(1)

w(2)

⋮
w(n)

W Y
SFM Data %

1) if , transport  
    

Z ∉ BN-set
Z ∣ x1 ↦ Z ∣ x0

z̃(1)

z̃(2)

⋮
z̃(n)

w̃(1)

w̃(2)

⋮
w̃(n)

y(1)

y(2)

⋮
y(n)

2) if , transport 

    

W ∉ BN-set
W ∣ x1, Z = z ↦ W ∣ x0, Z = z

3) transport  
   Y ∣ x1, Z = z, W = w ↦ Y ∣ x0, Z = z, W = w

ỹ(1)

ỹ(2)

⋮
ỹ(n)

Section 5.2 
Theorem 11



Pre-processing solution (Causal IF)
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Theorem. Let  be an SCM compatible with the SFM. Let  be the optimal 
transport map obtained when applying Causal IF. Define a new, additional 
mechanism of the SCM  such that


                             


For the transformed outcome  we can then claim: 

              

Furthermore, the transformed outcome  also satisfies

 
                            

ℳ τ

ℳ

Ỹ ← τY(Y; X, Z, W ) .

Ỹ

if Z ∉ BN-set ⟹ x-SEx1,x0(ỹ) = 0.
if W ∉ BN-set ⟹ x-IEx1,x0(ỹ ∣ x0) = 0.

Ỹ

x-DEx0,x1(ỹ ∣ x0) = 0.



Moving beyond SFM
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W

X Y

Z

Protected

Attribute

Outcome

Mediators

Demographic variables

SFM

better resolution

W1

X Y

Z2Z1

W2

Diagram &

Measures direct, indirect, spurious

Business Necessity

Fair Prediction Causal IF

{{∅}, {Z}, {W}, {Z, W}}

Measures variable specific

Business Necessity        any                      

Fair Prediction fairadapt

V′ ⊆ V

Section 6 
TBD



Conclusions
• Well-founded disparate treatment and impact claims require the plaintiff to 

establish a causal connection between a defendant’s policy and the statistical 
disparities found in the observed data. 


SCOTUS: No fairness claim can be made without solid causal underpinnings. 

•  We introduced a framework for fairness analysis based on causal inference to 

support such claims. In particular, we showed

A. - how the total variation can be decomposed into variations that can be easily 

associated with the underlying causal mechanisms, and mapped to disparate 
impact and disparate treatment doctrines.


B. - how the developed foundations of Causal Fairness Analysis can be applied in 
practice, in the context of bias detection and fair prediction.


•  We hope these results can help towards the development of the next generation of 
AI systems to be more fair, accountable, and transparent.

Thank you!
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